

    
      
          
            
  
Summary

pyOpenMS are the Python bindings to the OpenMS library which are available for
Windows, Linux and OSX.

The pyOpenMS package contains Python bindings for a large part of the OpenMS
library (http://www.open-ms.de) for mass spectrometry based proteomics. It thus
provides providing facile access to a feature-rich, open-source algorithm
library for mass-spectrometry based proteomics analysis. These Python bindings
allow raw access to the data-structures and algorithms implemented in OpenMS,
specifically those for file access (mzXML, mzML, TraML, mzIdentML among
others), basic signal processing (smoothing, filtering, de-isotoping and
peak-picking) and complex data analysis (including label-free, SILAC, iTRAQ and
SWATH analysis tools).

Please see the appendix of the official pyOpenMS Manual [http://proteomics.ethz.ch/pyOpenMS_Manual.pdf] for a comeplete documentation
of the pyOpenMS API and all wrapped classes.
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pyOpenMS Installation


Binaries

To install pyOpenMS from the binaries, you can simply type

pip install numpy
pip install pyopenms





We have binary packages for OSX, Linux and Windows (64 bit only). Note that for
Windows, we only support Python 3.5 and 3.6 in their 64 bit versions, therefore
make sure to download the 64bit Python release. For OSX and Linux, we also
support Python 2.7 as well as Python 3.4 (Linux only).

You can install Python first from here [https://www.python.org/downloads/],
again make sure to download the 64bit release. You can then open a shell and
type the two commands above (on Windows you may potentially have to use
C:\Python36\Scripts\pip.exe in case pip is not in your system path).




Source

To install pyOpenMS from source, you will first have to compile OpenMS
successfully on your platform of choice and then follow the building from
source instructions.




Wrap Classes

In order to wrap new classes in pyOpenMS, read the following guide.







          

      

      

    

  

    
      
          
            
  
Getting Started


Import pyopenms

After installation, you should be able to import pyopenms as a package

import pyopenms





which should now give you access to all of pyopenms. You should now be able to
interact with the OpenMS library and, for example, read and write mzML files:

import pyopenms
exp = pyopenms.MSExperiment()
pyopenms.MzMLFile().store("testfile.mzML", exp)





which will create an empty mzML file called testfile.mzML.




Getting help

There are multiple ways to get information about the available functions and
methods. We can inspect individual pyOpenMS objects through the help
function:

>>> import pyopenms
>>> help(pyopenms.MSExperiment)
Help on class MSExperiment in module pyopenms.pyopenms_2:

class MSExperiment(__builtin__.object)
 |  Methods defined here:
 |
 |  __copy__(...)
 |
 |  __deepcopy__(...)
 [...]





which lists the available functions. This full list indicates that
pyopenms.MSExperiment has multiple methods, among them __copy__.  The
command also lists the signature for each function, allowing users to identify
the function arguments and return types. In order to get more information about
the wrapped functions, we can also consult the pyOpenMS manual [http://proteomics.ethz.ch/pyOpenMS_Manual.pdf] which references to all
wrapped functions. For a more complete documentation of the
underlying wrapped methods, please consult the official OpenMS documentation,
in this case the MSExperiment documentation [http://ftp.mi.fu-berlin.de/pub/OpenMS/release-documentation/html/classOpenMS_1_1MSExperiment.html].




First look at data


File reading

pyOpenMS supports a variety of different files through the implementations in
OpenMS. In order to read mass spectrometric data, we can download the mzML
example file [http://proteowizard.sourceforge.net/example_data/tiny.pwiz.1.1.mzML]

import urllib
from pyopenms import *
urllib.urlretrieve ("http://proteowizard.sourceforge.net/example_data/tiny.pwiz.1.1.mzML", "tiny.pwiz.1.1.mzML")
exp = MSExperiment()
MzMLFile().load("tiny.pwiz.1.1.mzML", exp)





which will load the content of the “tiny.pwiz.1.1.mzML” file into the exp
variable of type MSExperiment.
We can now inspect the properties of this object:

>>> help(exp)
Help on MSExperiment object:

class MSExperiment(__builtin__.object)
 |  Methods defined here:
 ...
 |  getNrChromatograms(...)
 |      Cython signature: size_t getNrChromatograms()
 |
 |  getNrSpectra(...)
 |      Cython signature: size_t getNrSpectra()
 |
 ...





which indicates that the variable exp has (among others) the functions
getNrSpectra and getNrChromatograms. We can now try these functions:

>>> exp.getNrSpectra()
4
>>> exp.getNrChromatograms()
2





and indeed we see that we get information about the underlying MS data. We can
iterate through the spectra as follows:




Iteration

>>> for spec in exp:
...   print "MS Level:", spec.getMSLevel()
...
MS Level: 1
MS Level: 2
MS Level: 1
MS Level: 1





This iterates through all available spectra, we can also access spectra through the [] operator:

>>> print "MS Level:", exp[1].getMSLevel()
MS Level: 2





Note that spec[1] will access the second spectrum (arrays start at
0). We can access the raw peaks through get_peaks():

>>> spec = exp[1]
>>> mz, i = spec.get_peaks()
>>> sum(i)
110





Which will access the data using a numpy array, storing the m/z information
in the mz vector and the intensity in the i vector. Alternatively, we
can also iterate over individual peak objects as follows (this tends to be
slower):

>>> for peak in spec:
...   print peak.getIntensity()
...
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0








TIC calculation

With this information, we can now calculate a total ion current (TIC) using the
following function:

	1
2
3
4
5
6
7

	 def calcTIC(exp):
     tic = 0
     for spec in exp:
         if spec.getMSLevel() == 1:
             mz, i = spec.get_peaks()
             tic += sum(i)
     return tic







To calculate a TIC we would now call the function:

	1
2
3
4

	 >>> calcTIC(exp)
 240.0
 >>> sum([sum(s.get_peaks()[1]) for s in exp if s.getMSLevel() == 1])
 240.0







Note how one can compute the same property using list comprehensions in Python (see the third line above).









          

      

      

    

  

    
      
          
            
  
Reading Raw MS data


mzML files in memory

As discussed in the last section, the most straight forward way to load mass
spectrometric data is using the MzMLFile class:

import urllib
from pyopenms import *
urllib.urlretrieve ("http://proteowizard.sourceforge.net/example_data/tiny.pwiz.1.1.mzML", "test.mzML")
exp = MSExperiment()
MzMLFile().load("test.mzML", exp)





which will load the content of the “test.mzML” file into the exp
variable of type MSExperiment. We can access the raw data and spectra through:

spectrum_data = exp.getSpectrum(0).get_peaks()
chromatogram_data = exp.getChromatogram(0).get_peaks()





Which will allow us to compute on spectra and chromatogram data. We can
manipulate the spectra in the file for example as follows:

spec = []
for s in exp.getSpectra():
    if s.getMSLevel() != 1:
        spec.append(s)
exp.setSpectra(spec)





Which will only keep MS2 spectra in the MSExperiment. We can then store the modified data structure on disk:

MzMLFile().store("filtered.mzML", exp)





Putting this together, a small filtering program would look like this:

"""
Script to read mzML data and filter out all MS1 spectra
"""
from pyopenms import *
exp = MSExperiment()
MzMLFile().load("test.mzML", exp)

spec = []
for s in exp.getSpectra():
    if s.getMSLevel() != 1:
        spec.append(s)

exp.setSpectra(spec)

MzMLFile().store("filtered.mzML", exp)








mzML files as streams

In some instances it is impossible or inconvenient to load all data from an
mzML file directly into memory. OpenMS offers streaming-based access to mass
spectrometric data which uses a callback object that receives spectra and
chromatograms as they are read from the disk. A simple implementation could look like

class MSCallback():
    def setExperimentalSettings(self, s):
        pass

    def setExpectedSize(self, a, b):
        pass

    def consumeChromatogram(self, c):
        print "Read a chromatogram"

    def consumeSpectrum(self, s):
        print "Read a spectrum"





which can the be used as follows:

>>> from pyopenms import *
>>> filename = "test.mzML"
>>> consumer = MSCallback()
>>> MzMLFile().transform(filename, consumer)
Read a spectrum
Read a spectrum
Read a spectrum
Read a spectrum
Read a chromatogram
Read a chromatogram





which provides an intuition on how the callback object works: whenever a
spectrum or chromatogram is read from disk, the function consumeSpectrum or
consumeChromatogram is called and a specific action is performed. We can
use this to implement a simple filtering function for mass spectra:

class FilteringConsumer():
    """
    Consumer that forwards all calls the internal consumer (after
    filtering)
    """

    def __init__(self, consumer, filter_string):
        self._internal_consumer = consumer
        self.filter_string = filter_string

    def setExperimentalSettings(self, s):
        self._internal_consumer.setExperimentalSettings(s)

    def setExpectedSize(self, a, b):
        self._internal_consumer.setExpectedSize(a, b)

    def consumeChromatogram(self, c):
        if c.getNativeID().find(self.filter_string) != -1:
            self._internal_consumer.consumeChromatogram(c)

    def consumeSpectrum(self, s):
        if s.getNativeID().find(self.filter_string) != -1:
            self._internal_consumer.consumeSpectrum(s)

###################################
filter_string = "DECOY"
inputfile = "in.mzML"
outputfile = "out.mzML"
###################################

consumer = pyopenms.PlainMSDataWritingConsumer(outputfile)
consumer = FilteringConsumer(consumer, filter_string)

pyopenms.MzMLFile().transform(inputfile, consumer)





where the spectra and chromatograms are filtered by their native ids. It is
similarly trivial to implement filtering by other attributes. Note how the data
are written to disk using the PlainMSDataWritingConsumer which is one of
multiple available consumer classes – this specific class will simply take the
spectrum s or chromatogram c and write it to disk (the location of the
output file is given by the outfile variable).

This approach is memory efficient in cases where the whole data data may not
fit into memory.







          

      

      

    

  

    
      
          
            
  
Other MS data formats


Identification data (idXML, mzIdentML, pepXML, protXML)

You can store and load identification data from an idXML file as follows:

import urllib
from pyopenms import *
gh = "https://raw.githubusercontent.com/OpenMS/OpenMS/develop"
urllib.urlretrieve (gh +"/src/tests/class_tests/openms/data/IdXMLFile_whole.idXML", "test.idXML")
protein_ids = []
peptide_ids = []
IdXMLFile().load("test.idXML", protein_ids, peptide_ids)
IdXMLFile().store("test.out.idXML", protein_ids, peptide_ids)





You can store and load identification data from an mzIdentML file as follows:

import urllib
from pyopenms import *
gh = "https://raw.githubusercontent.com/OpenMS/OpenMS/develop"
urllib.urlretrieve (gh + "/src/tests/class_tests/openms/data/MzIdentML_3runs.mzid", "test.mzid")
protein_ids = []
peptide_ids = []
MzIdentMLFile().load("test.mzid", protein_ids, peptide_ids)
MzIdentMLFile().store("test.out.mzid", protein_ids, peptide_ids)





You can store and load identification data from a TPP pepXML file as follows:

import urllib
from pyopenms import *
gh = "https://raw.githubusercontent.com/OpenMS/OpenMS/develop"
urllib.urlretrieve (gh + "/src/tests/class_tests/openms/data/PepXMLFile_test.pepxml", "test.pepxml")
protein_ids = []
peptide_ids = []
PepXMLFile().load("test.pepxml", protein_ids, peptide_ids)
PepXMLFile().store("test.out.pepxml", protein_ids, peptide_ids)





You can load (storing is not supported) identification data from a TPP protXML file as follows:

import urllib
from pyopenms import *
gh = "https://raw.githubusercontent.com/OpenMS/OpenMS/develop"
urllib.urlretrieve (gh + "/src/tests/class_tests/openms/data/ProtXMLFile_input_1.protXML", "test.protXML")
protein_ids = ProteinIdentification()
peptide_ids = PeptideIdentification()
ProtXMLFile().load("test.protXML", protein_ids, peptide_ids)
# storing protein XML file is not yet supported





note how each data file produces two vectors of type ProteinIdentification
and PeptideIdentification which also means that conversion between two data
types is trivial: load data from one data file and use the storage function of
the other file.




Quantiative data (featureXML, consensusXML)

OpenMS stores quantitative information in the internal featureXML and
consensusXML data formats.  These can be accessed as follows:

import urllib
from pyopenms import *
gh = "https://raw.githubusercontent.com/OpenMS/OpenMS/develop"
urllib.urlretrieve (gh + "/src/tests/topp/FeatureFinderCentroided_1_output.featureXML", "test.featureXML")
features = FeatureMap()
FeatureXMLFile().load("test.featureXML", features)
FeatureXMLFile().store("test.out.featureXML", features)





and for consensusXML

import urllib
from pyopenms import *
gh = "https://raw.githubusercontent.com/OpenMS/OpenMS/develop"
urllib.urlretrieve (gh + "/src/tests/class_tests/openms/data/ConsensusXMLFile_1.consensusXML", "test.consensusXML")
features = ConsensusMap()
ConsensusXMLFile().load("test.consensusXML", features)
ConsensusXMLFile().store("test.out.consensusXML", features)








Transition data (TraML)

The TraML data format allows you to store transition information for targeted
experiments (SRM / MRM / PRM / DIA).

import urllib
from pyopenms import *
gh = "https://raw.githubusercontent.com/OpenMS/OpenMS/develop"
urllib.urlretrieve (gh + "/src/tests/topp/ConvertTSVToTraML_output.TraML", "test.TraML")
targeted_exp = TargetedExperiment()
TraMLFile().load("test.TraML", targeted_exp)
TraMLFile().store("test.out.TraML", targeted_exp)











          

      

      

    

  

    
      
          
            
  
MS Data


Spectrum

The most important container for raw data and peaks is MSSpectrum which we
have already worked with in the Getting Started
tutorial.  MSSpectrum is a container for 1-dimensional peak data (a
container of Peak1D). You can access these objects directly, however it is
faster to use the get_peaks() and set_peaks functions which use Python
numpy arrays for raw data access. Meta-data is accessible through inheritance
of the SpectrumSettings  objects which handles meta data of a spectrum.

In the following example program, a MSSpectrum is filled with peaks, sorted
according to mass-to-charge ratio and a selection of peak positions is
displayed.

First we create a spectrum and insert peaks with descending mass-to-charge ratios:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from pyopenms import *
spectrum = MSSpectrum()
mz = range(1500, 500, -100)
i = [0 for mass in mz]
spectrum.set_peaks([mz, i])

# Sort the peaks according to ascending mass-to-charge ratio
spectrum.sortByPosition()

# Iterate over spectrum of those peaks
for p in spectrum:
    print(p.getMZ(), p.getIntensity())

# More efficient peak access with get_peaks()
for mz, i in zip(*spectrum.get_peaks()):
    print(mz, i)

# Access a peak by index
print(spectrum[2].getMZ(), spectrum[2].getIntensity())







Note how lines 11-12 (as well as line 19) use the direct access to the
Peak1D objects (explicit iteration through the MSSpectrum object, which
is convenient but slow since a new Peak1D object needs to be created each
time) while lines 15-16 use the faster access through numpy arrays. Direct
iteration is only shown for demonstration purposes and should not be used in
production code.

To discover the full set of functionality of MSSpectrum, we use the
help() function. In particular, we find several important sets of meta
information attached to the spectrum including retention time, the ms level
(MS1, MS2, …), precursor ion, ion mobility drift time and extra data arrays.

from pyopenms import *
help(MSSpectrum)





We now set several of these properties in a current MSSpectrum:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	from pyopenms import *

spectrum = MSSpectrum()
spectrum.setDriftTime(25) # 25 ms
spectrum.setRT(205.2) # 205.2 s
spectrum.setMSLevel(3) # MS3
p = Precursor()
p.setIsolationWindowLowerOffset(1.5)
p.setIsolationWindowUpperOffset(1.5)
p.setMZ(600) # isolation at 600 +/- 1.5 Th
p.setActivationEnergy(40) # 40 eV
p.setCharge(4) # 4+ ion
spectrum.setPrecursors( [p] )

# Add raw data to spectrum
spectrum.set_peaks( ([401.5], [900]) )

# Additional data arrays / peak annotations
fda = FloatDataArray()
fda.setName("Signal to Noise Array")
fda.push_back(15)
sda = StringDataArray()
sda.setName("Peak annotation")
sda.push_back("y15++")
spectrum.setFloatDataArrays( [fda] )
spectrum.setStringDataArrays( [sda] )

# Add spectrum to MSExperiment
exp = MSExperiment()
exp.addSpectrum(spectrum)

# Add second spectrum and store as mzML file
spectrum2 = MSSpectrum()
spectrum2.set_peaks( ([1, 2], [1, 2]) )
exp.addSpectrum(spectrum2)

MzMLFile().store("testfile.mzML", exp)







We have created a single spectrum on line 3 and add meta information (drift
time, retention time, MS level, precursor charge, isolation window and
activation energy) on lines 4-13. We next add actual peaks into the spectrum (a
single peak at 401.5 m/z and 900 intensity) on line 16 and on lines 19-26 add
further meta information in the form of additional data arrays for each peak
(e.g. one trace describes “Signal to Noise” for each peak and the second traces
describes the “Peak annotation”, identifying the peak at 401.5 m/z as a
doubly charged y15 ion). Finally, we add the spectrum to a MSExperiment
container on lines 29-30 and store the container in using the MzMLFile
class in a file called “testfile.mzML” on line 37.  To ensure our viewer works
as expected, we add a second spectrum to the file before storing the file.

You can now open the resulting spectrum in a spectrum viewer. We use the OpenMS
viewer TOPPView (which you will get when you install OpenMS from the
official website) and look at our MS3 spectrum:

[image: _images/spectrum1.png]
TOPPView displays our MS3 spectrum with its single peak at 401.5 m/z and it
also correctly displays its retention time at 205.2 seconds and precursor
isolation target of 600.0 m/z.  Notice how TOPPView displays the information
about the S/N for the peak (S/N = 15) and its annotation as y15++ in the status
bar below when the user clicks on the peak at 401.5 m/z as shown in the
screenshot.




LC-MS/MS Experiment

In OpenMS, LC-MS/MS injections are represented as so-called peak maps (using
the MSExperiment class), which we have already encountered above. The
MSExperiment class can hold a list of MSSpectrum object (as well as a
list of MSChromatogram objects, see below). The MSExperiment object
holds such peak maps as well as meta-data about the injection. Access to
individual spectra is performed through MSExperiment.getSpectrum and
MSExperiment.getChromatogram.

In the following code, we create an MSExperiment and populate it with
several spectra:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	# The following examples creates an MSExperiment which holds six
# MSSpectrum instances.
exp = MSExperiment()
for i in range(6):
    spectrum = MSSpectrum()
    spectrum.setRT(i)
    spectrum.setMSLevel(1)
    for mz in range(500, 900, 100):
      peak = Peak1D()
      peak.setMZ(mz + i)
      peak.setIntensity(100 - 25*abs(i-2.5) )
      spectrum.push_back(peak)
    exp.addSpectrum(spectrum)

# Iterate over spectra
for spectrum in exp:
    for peak in spectrum:
        print (spectrum.getRT(), peak.getMZ(), peak.getIntensity())







In the above code, we create six instances of MSSpectrum (line 4), populate
it with three peaks at 500, 900 and 100 m/z and append them to the
MSExperiment object (line 13).  We can easily iterate over the spectra in
the whole experiment by using the intuitive iteration on lines 16-18 or we can
use list comprehensions to sum up intensities of all spectra that fulfill
certain conditions:

>>> # Sum intensity of all spectra between RT 2.0 and 3.0
>>> print(sum([p.getIntensity() for s in exp
...              if s.getRT() >= 2.0 and s.getRT() <= 3.0 for p in s]))
700.0
>>> 87.5 * 8
700.0
>>>





We can again store the resulting experiment containing the six spectra as mzML
using the MzMLFile object:

# Store as mzML
MzMLFile().store("testfile2.mzML", exp)





Again we can visualize the resulting data using TOPPView using its 3D
viewer capability, which shows the six scans over retention time where the
traces first increase and then decrease in intensity:

[image: _images/spectrum2.png]



Chromatogram

An additional container for raw data is the MSChromatogram container, which
is highly analogous to the MSSpectrum container, but contains an array of
ChromatogramPeak and is derived from ChromatogramSettings:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	from pyopenms import *
import numpy as np

def gaussian(x, mu, sig):
    return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.)))

# Create new chromatogram
chromatogram = MSChromatogram()

# Set raw data (RT and intensity)
rt = range(1500, 500, -100)
i = [gaussian(rtime, 1000, 150) for rtime in rt]
chromatogram.set_peaks([rt, i])

# Sort the peaks according to ascending retention time
chromatogram.sortByPosition()

# Iterate over chromatogram of those peaks
for p in chromatogram:
    print(p.getRT(), p.getIntensity())

# More efficient peak access with get_peaks()
for rt, i in zip(*chromatogram.get_peaks()):
    print(rt, i)

# Access a peak by index
print(chromatogram[2].getRT(), chromatogram[2].getIntensity())







We now again add meta information to the chromatogram:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	chromatogram.setNativeID("Trace XIC@405.2")

# Store a precursor ion for the chromatogram
p = Precursor()
p.setIsolationWindowLowerOffset(1.5)
p.setIsolationWindowUpperOffset(1.5)
p.setMZ(405.2) # isolation at 405.2 +/- 1.5 Th
p.setActivationEnergy(40) # 40 eV
p.setCharge(2) # 2+ ion
p.setMetaValue("description", chromatogram.getNativeID())
p.setMetaValue("peptide_sequence", chromatogram.getNativeID())
chromatogram.setPrecursor(p)

# Also store a product ion for the chromatogram (e.g. for SRM)
p = Product()
p.setMZ(603.4) # transition from 405.2 -> 603.4
chromatogram.setProduct(p)

# Store as mzML
exp = MSExperiment()
exp.addChromatogram(chromatogram)
MzMLFile().store("testfile3.mzML", exp)







This shows how the MSExperiment class can hold spectra as well as chromatograms.

Again we can visualize the resulting data using TOPPView using its chromatographic viewer
capability, which shows the peak over retention time:

[image: _images/chromatogram1.png]
Note how the annotation using precursor and production mass of our XIC
chromatogram is displayed in the viewer.







          

      

      

    

  

    
      
          
            
  
Chemistry


Elements

OpenMS has representations for various chemical concepts including molecular
formulas, isotopes, amino acid sequences and modifications. First, we look at how
elements are stored in OpenMS:

from pyopenms import *

edb = ElementDB()

edb.hasElement("O")
edb.hasElement("S")

oxygen = edb.getElement("O")
oxygen.getName()
oxygen.getSymbol()
oxygen.getMonoWeight()
isotopes = oxygen.getIsotopeDistribution()

sulfur = edb.getElement("S")
sulfur.getName()
sulfur.getSymbol()
sulfur.getMonoWeight()
isotopes = sulfur.getIsotopeDistribution()
for iso in isotopes.getContainer():
    print (iso)





As we can see, OpenMS knows common elements like Oxygen and Sulfur as well as
their isotopic distribution. These values are stored in Elements.xml in the
OpenMS share folder and can, in principle, be modified. The above code outputs
the isotopes of sulfur and their abundance:

(32, 0.9493)
(33, 0.0076)
(34, 0.0429)
(36, 0.0002)








Molecular Formula

Elements can be combined to molecular formulas (EmpiricalFormula) which can
be used to describe small molecules or peptides.  The class supports a large
number of operations like addition and subtraction. A simple example is given
in the next few lines of code.

from pyopenms import *

methanol = EmpiricalFormula("CH3OH")
water = EmpiricalFormula("H2O")
wm = EmpiricalFormula(str(water) + str(methanol))
print(wm)

isotopes = wm.getIsotopeDistribution(3)
for iso in isotopes.getContainer():
    print (iso)





which produces

C1H6O2
(50, 0.9838702160434344)
(51, 0.012069784261989644)
(52, 0.004059999694575987)








AA Residue

An amino acid residue is represented in OpenMS by the class Residue. It provides a
container for the amino acids as well as some functionality. The class is able
to provide information such as the isotope distribution of the residue, the
average and monoisotopic weight. The residues can be identified by their full
name, their three letter abbreviation or the single letter abbreviation. The
residue can also be modified, which is implemented in the Modification class.
Additional less frequently used parameters of a residue like the gas-phase
basicity and pk values are also available.

>>> from pyopenms import *
>>> lys = ResidueDB().getResidue("Lysine")
>>> lys.getName()
'Lysine'
>>> lys.getThreeLetterCode()
'LYS'
>>> lys.getOneLetterCode()
'K'
>>> lys.getAverageWeight(Residue.ResidueType.Full)
146.18788276708443
>>> lys.getMonoWeight(Residue.ResidueType.Full)
146.1055284466
>>> lys.getPka()
2.16





As we can see, OpenMS knows common amino acids like lysine as well as
some properties of them. These values are stored in Residues.xml in the
OpenMS share folder and can, in principle, be modified.




Modifications

An amino acid residue modification is represented in OpenMS by the class
ResidueModification. The known modifications are stored in the
ModificationsDB object, which is capable of retrieving specific
modifications. It contains UniMod as well as PSI modifications.

from pyopenms import *
ts = ResidueModification.TermSpecificity
ox = ModificationsDB().getModification("Oxidation", "", ts.ANYWHERE)
print(ox.getUniModAccession())
print(ox.getUniModRecordId())
print(ox.getDiffMonoMass())
print(ox.getId())
print(ox.getFullId())
print(ox.getFullName())
print(ox.getDiffFormula())





which outputs

UniMod:35
35
15.994915
Oxidation
Oxidation (N)
Oxidation or Hydroxylation
O1





thus providing information about the “Oxidation” modification. As above, we can
investigate the isotopic distribution of the modification (which in this case
is identical to the one of Oxygen by itself):

isotopes = ox.getDiffFormula().getIsotopeDistribution(5)
for iso in isotopes.getContainer():
    print (iso)





In the next section, we will look at how to combine amino acids and
modifications to form amino acid sequences (peptides).







          

      

      

    

  

    
      
          
            
  
Peptides and Proteins


AA Sequences

The AASequence class handles amino acid sequences in OpenMS. A string of
amino acid residues can be turned into a instance of AASequence to provide
some commonly used operations and data. The implementation supports
mathematical operations like addition or subtraction. Also, average and mono
isotopic weight and isotope distributions are accessible.

Weights, formulas and isotope distribution can be calculated depending on the
charge state (additional proton count in case of positive ions) and ion type.
Therefore, the class allows for a flexible handling of amino acid strings.

A very simple example of handling amino acid sequence with AASequence is given
in the next few lines, which also calculates the weight of the (M) and (M+2H)2+
ions.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from pyopenms import *
seq = AASequence.fromString("DFPIANGER", True)
prefix = seq.getPrefix(4)
suffix = seq.getSuffix(5)
concat = seq + seq

print(seq)
print(concat)
print(suffix)
seq.getMonoWeight(Residue.ResidueType.Full, 0)
seq.getMonoWeight(Residue.ResidueType.Full, 2) / 2.0
concat.getMonoWeight(Residue.ResidueType.Full, 0)







We can now combine our knowledge of AASequence with what we learned above
about EmpiricalFormula to get accurate mass and isotope distributions from
the amino acid sequence:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	seq_formula = seq.getFormula(Residue.ResidueType.Full, 0)
print(seq_formula)

isotopes = seq_formula.getIsotopeDistribution(6)
for iso in isotopes.getContainer():
    print (iso)

suffix = seq.getSuffix(3) # y3 ion "GER"
print(suffix)
y3_formula = suffix.getFormula(Residue.ResidueType.YIon, 2) # y3++ ion
suffix.getMonoWeight(Residue.ResidueType.YIon, 2) / 2.0 # CORRECT
suffix.getMonoWeight(Residue.ResidueType.XIon, 2) / 2.0 # CORRECT
suffix.getMonoWeight(Residue.ResidueType.BIon, 2) / 2.0 # INCORRECT
print(y3_formula)
print(seq_formula)







Note on lines 11 to 13 we need to remember that we are dealing with an ion of
the x/y/z series since we used a suffix of the original peptide and using any
other ion type will produce a different mass-to-charge ratio (and while “GER”
would also be a valid “x3” ion, note that it cannot be a valid ion from the
a/b/c series and therefore the mass on line 13 cannot refer to the same input
peptide “DFPIANGER” since its “b3” ion would be “DFP” and not “GER”).




Modified AA Sequences

The AASequence class can also handle modifications,
modifications are specified using a unique string identifier present in the
ModificationsDB in round brackets after the modified amino acid or by providing
the mass of the residue in square brackets. For example
AASequence.fromString(".DFPIAM(Oxidation)GER.", True) creates an instance of the
peptide “DFPIAMGER” with an oxidized methionine. There are multiple ways to specify modifications, and
AASequence.fromString("DFPIAM(UniMod:35)GER", True),
AASequence.fromString("DFPIAM[+16]GER", True) and
AASequence.fromString("DFPIAM[147]GER", True) are all equivalent).

N- and C-terminal modifications are represented by brackets to the right of the dots
terminating the sequence. For example, ".(Dimethyl)DFPIAMGER." and
".DFPIAMGER.(Label:18O(2))" represent the labelling of the N- and C-terminus
respectively, but ".DFPIAMGER(Phospho)." will be interpreted as a
phosphorylation of the last arginine at its side chain.

from pyopenms import *
seq = AASequence.fromString("PEPTIDESEKUEM(Oxidation)CER", True)
print(seq.toString())
print(seq.toUnmodifiedString())
print(seq.toBracketString(True, []))
print(seq.toBracketString(False, []))

print(AASequence.fromString("DFPIAM(UniMod:35)GER", True))
print(AASequence.fromString("DFPIAM[+16]GER", True))
print(AASequence.fromString("DFPIAM[+15.99]GER", True))
print(AASequence.fromString("DFPIAM[147]GER", True))
print(AASequence.fromString("DFPIAM[147.035405]GER", True))





The above code outputs:

PEPTIDESEKUEM(Oxidation)CER
PEPTIDESEKUEMCER
PEPTIDESEKUEM[147]CER
PEPTIDESEKUEM[147.0354000171]CER

DFPIAM(Oxidation)GER
DFPIAM(Oxidation)GER
DFPIAM(Oxidation)GER
DFPIAM(Oxidation)GER
DFPIAM(Oxidation)GER





Note there is a subtle difference between
AASequence.fromString(".DFPIAM[+16]GER.") and
AASequence.fromString(".DFPIAM[+15.9949]GER.") - while the former will try to
find the first modification matching to a mass difference of 16 +/- 0.5, the
latter will try to find the closest matching modification to the exact mass.
The exact mass approach usually gives the intended results while the first
approach may or may not.

Arbitrary/unknown amino acids (usually due to an unknown modification) can be
specified using tags preceded by X: “X[weight]”. This indicates a new amino
acid (“X”) with the specified weight, e.g. "RX[148.5]T". Note that this tag
does not alter the amino acids to the left (R) or right (T). Rather, X
represents an amino acid on its own. Be careful when converting such AASequence
objects to an EmpiricalFormula using getFormula(), as tags will not be
considered in this case (there exists no formula for them). However, they have
an influence on getMonoWeight() and getAverageWeight()!




Proteins

Protein sequences can be accessed through the FASTAEntry object and can be
read and stored on disk using a FASTAFile:

from pyopenms import *
bsa = FASTAEntry()
bsa.sequence = "MKWVTFISLLLLFSSAYSRGVFRRDTHKSEIAHRFKDLGE"
bsa.description = "BSA Bovine Albumin (partial sequence)"
bsa.identifier = "BSA"
alb = FASTAEntry()
alb.sequence = "MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGE"
alb.description = "ALB Human Albumin (partial sequence)"
alb.identifier = "ALB"

entries = [bsa, alb]

f = pyopenms.FASTAFile()
f.store("example.fasta", entries)





Afterwards, the protein sequences can be read again using:

from pyopenms import *
entries = []
f = FASTAFile()
f.load("example.fasta", entries)
print( len(entries) )
for e in entries:
  print (e.identifier, e.sequence)








TheoreticalSpectrumGenerator

This class implements a simple generator which generates tandem MS spectra from
a given peptide charge combination. There are various options which influence
the occurring ions and their intensities.

from pyopenms import *

tsg = TheoreticalSpectrumGenerator()
spec1 = MSSpectrum()
spec2 = MSSpectrum()
peptide = AASequence.fromString("DFPIANGER", True)
# standard behavior is adding b- and y-ions of charge 1
p = Param()
p.setValue("add_b_ions", "false", "Add peaks of b-ions to the spectrum")
tsg.setParameters(p)
tsg.getSpectrum(spec1, peptide, 1, 1)
p.setValue("add_b_ions", "true", "Add peaks of a-ions to the spectrum")
p.setValue("add_metainfo", "true", "")
tsg.setParameters(p)
tsg.getSpectrum(spec2, peptide, 1, 2)
print("Spectrum 1 has", spec1.size(), "peaks.")
print("Spectrum 2 has", spec2.size(), "peaks.")

# Iterate over annotated ions and their masses
for ion, peak in zip(spec2.getStringDataArrays()[0], spec2):
    print(ion, peak.getMZ())





which outputs:

Spectrum 1 has 8 peaks.
Spectrum 2 has 30 peaks.

y1++ 88.0631146901
b2++ 132.05495569
y2++ 152.584411802
y1+ 175.118952913
[...]





The example shows how to put peaks of a certain type, y-ions in this case, into
a spectrum. Spectrum 2 is filled with a complete spectrum of all peaks (a-, b-,
y-ions and losses). The TheoreticalSpectrumGenerator has many parameters
which have a detailed description located in the class documentation. For the
first spectrum, no b ions are added. Note how the add_metainfo parameter
in the second example populates the StringDataArray of the output
spectrum, allowing us to iterate over annotated ions and their masses.







          

      

      

    

  

    
      
          
            
  
Digestion


Proteolytic Digestion with Trypsin

OpenMS has classes for proteolytic digestion which can be used as follows:

from pyopenms import *
import urllib
urllib.urlretrieve ("http://www.uniprot.org/uniprot/P02769.fasta", "bsa.fasta")

dig = EnzymaticDigestion()
dig.getEnzymeName() # Trypsin
bsa = "".join([l.strip() for l in open("bsa.fasta").readlines()[1:]])
bsa = AASequence.fromString(bsa, True)
result = []
dig.digest(bsa, result)
print(result[4])
len(result) # 82 peptides








Proteolytic Digestion with Lys-C

We can of course also use different enzymes, these are defined Enzyme.xml
file and can be accessed using the EnzymesDB

names = []
EnzymesDB().getAllNames(names)
len(names) # 25 by default
e = EnzymesDB().getEnzyme('Lys-C')
e.getRegExDescription()
e.getRegEx()





Now that we have learned about the other enzymes available, we can use it to
cut out protein of interest:

from pyopenms import *
import urllib
urllib.urlretrieve ("http://www.uniprot.org/uniprot/P02769.fasta", "bsa.fasta")

dig = EnzymaticDigestion()
dig.setEnzyme('Lys-C')
bsa = "".join([l.strip() for l in open("bsa.fasta").readlines()[1:]])
bsa = AASequence.fromString(bsa, True)
result = []
dig.digest(bsa, result)
print(result[4])
len(result) # 57 peptides





We now get different digested peptides (57 vs 82) and the fourth peptide is now
GLVLIAFSQYLQQCPFDEHVK instead of DTHK as with Trypsin (see above).







          

      

      

    

  

    
      
          
            
  
Identification Data

In OpenMS, identifications of peptides, proteins and small molecules are stored
in dedicated data structures. These data structures are typically stored to disc
as idXML or mzIdentML file. The highest-level structure is
ProteinIdentification. It stores all identified proteins of an identification
run as ProteinHit objects plus additional metadata (search parameters, etc.). Each
ProteinHit contains the actual protein accession, an associated score, and
(optionally) the protein sequence.

A PeptideIdentification object stores the
data corresponding to a single identified spectrum or feature. It has members
for the retention time, m/z, and a vector of PeptideHit objects. Each PeptideHit
stores the information of a specific peptide-to-spectrum match or PSM (e.g., the score
and the peptide sequence). Each PeptideHit also contains a vector of
PeptideEvidence objects which store the reference to one or more (in the case the
peptide maps to multiple proteins) proteins and the position therein.


ProteinIdentification

We can create an object of type ProteinIdentification  and populate it with
ProteinHit objects as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from pyopenms import *
from __future__ import print_function

# Create new protein identification object corresponding to a single search
protein_id = ProteinIdentification()
protein_id.setIdentifier("IdentificationRun1")

# Each ProteinIdentification object stores a vector of protein hits
protein_hit = ProteinHit()
protein_hit.setAccession("MyAccession")
protein_hit.setSequence("PEPTIDEPEPTIDEPEPTIDEPEPTIDER")
protein_hit.setScore(1.0)

protein_id.setHits([protein_hit])







We have now added a single ProteinHit with the accession MyAccession to
the ProteinIdentification object (note how on line 14 we directly added a
list of size 1).  We can continue to add meta-data for the whole identification
run (such as search parameters):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	now = DateTime.now()
date_string = now.getDate()
protein_id.setDateTime(now)

# Example of possible search parameters
search_parameters = SearchParameters() # ProteinIdentification::SearchParameters
search_parameters.db = "database"
search_parameters.charges = "+2"
protein_id.setSearchParameters(search_parameters)

# Some search engine meta data
protein_id.setSearchEngineVersion("v1.0.0")
protein_id.setSearchEngine("SearchEngine")
protein_id.setScoreType("HyperScore")

# Iterate over all protein hits
for hit in protein_id.getHits():
  print("Protein hit accession:", hit.getAccession())
  print("Protein hit sequence:", hit.getSequence())
  print("Protein hit score:", hit.getScore())










PeptideIdentification

Next, we can also create a PeptideIdentification object and add
corresponding PeptideHit objects:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	peptide_id = PeptideIdentification()

peptide_id.setRT(1243.56)
peptide_id.setMZ(440.0)
peptide_id.setScoreType("ScoreType")
peptide_id.setHigherScoreBetter(False)
peptide_id.setIdentifier("IdentificationRun1")

# define additional meta value for the peptide identification
peptide_id.setMetaValue("AdditionalMetaValue", "Value")

# create a new PeptideHit (best PSM)
peptide_hit = PeptideHit()
peptide_hit.setScore(1.0)
peptide_hit.setRank(1)
peptide_hit.setCharge(2)
peptide_hit.setSequence(AASequence.fromString("DLQM(Oxidation)TQSPSSLSVSVGDR", True))

# create a new PeptideHit (second best PSM)
peptide_hit2 = PeptideHit()
peptide_hit2.setScore(0.5)
peptide_hit2.setRank(2)
peptide_hit2.setCharge(2)
peptide_hit2.setSequence(AASequence.fromString("QDLM(Oxidation)TQSPSSLSVSVGDR", True))

# add PeptideHit to PeptideIdentification
peptide_id.setHits([peptide_hit, peptide_hit2])

# Iterate over PeptideIdentification
peptide_ids = [peptide_id]
for peptide_id in peptide_ids:
  # Peptide identification values
  print ("Peptide ID m/z:", peptide_id.getMZ())
  print ("Peptide ID rt:", peptide_id.getRT())
  print ("Peptide ID score type:", peptide_id.getScoreType())
  # PeptideHits
  for hit in peptide_id.getHits():
    print(" - Peptide hit rank:", hit.getRank())
    print(" - Peptide hit sequence:", hit.getSequence())
    print(" - Peptide hit score:", hit.getScore())







This allows us to represent single spectra (PeptideIdentification at m/z
440.0 and rt 1234.56) with possible identifications that are ranked by score.
In this case, apparently two possible peptides match the spectrum which have
the first three amino acids in a different order “DLQ” vs “QDL”).




Storage on disk

Finally, we can store the peptide and protein identification data in a
idXML file (a OpenMS internal file format which we have previously
discussed here)
which we would do as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	# Store the identification data in an idXML file
IdXMLFile().store("out.idXML", [protein_id], peptide_ids)
# and load it back into memory
prot_ids = []; pep_ids = []
IdXMLFile().load("out.idXML", prot_ids, pep_ids)

# Iterate over all protein hits
for protein_id in prot_ids:
  for hit in protein_id.getHits():
    print("Protein hit accession:", hit.getAccession())
    print("Protein hit sequence:", hit.getSequence())
    print("Protein hit score:", hit.getScore())

# Iterate over PeptideIdentification
for peptide_id in pep_ids:
  # Peptide identification values
  print ("Peptide ID m/z:", peptide_id.getMZ())
  print ("Peptide ID rt:", peptide_id.getRT())
  print ("Peptide ID score type:", peptide_id.getScoreType())
  # PeptideHits
  for hit in peptide_id.getHits():
    print(" - Peptide hit rank:", hit.getRank())
    print(" - Peptide hit sequence:", hit.getSequence())
    print(" - Peptide hit score:", hit.getScore())













          

      

      

    

  

    
      
          
            
  
Quantitative Data


Feature

In OpenMS, information about quantitative data is stored in a so-called
Feature which we have previously discussed here.  Each
Feature represents a region in RT and m/z space use for quantitative
analysis.

	1
2
3
4
5
6
7

	from pyopenms import *
feature = Feature()
feature.setMZ( 500.9 )
feature.setCharge(2)
feature.setRT( 1500.1 )
feature.setIntensity( 30500 )
feature.setOverallQuality( 10 )







Usually, the quantitative features would be produced by a so-called
“FeatureFinder” algorithm, which we will discuss in the next chapter. The
features can be stored in a FeatureMap and written to disk.

	1
2
3
4
5
6
7
8

	fm = FeatureMap()
fm.push_back(feature)
feature.setRT(1600.5 )
feature.setCharge(2)
feature.setMZ( 600.0 )
feature.setIntensity( 80500.0 )
fm.push_back(feature)
FeatureXMLFile().store("test.featureXML", fm)







Visualizing the resulting map in TOPPView allows detection of the two
features stored in the FeatureMap with the visualization indicating charge
state, m/z, RT and other properties:

[image: _images/feature.png]
Note that in this case only 2 features are present, but in a typical LC-MS/MS
experiments, thousands of features are present.




FeatureMap

The resulting FeatureMap can be used in various ways to extract
quantitative data directly and it supports direct iteration in Python:

	1
2
3
4
5

	from pyopenms import *
fmap = FeatureMap()
FeatureXMLFile().load("test.featureXML", fmap)
for feature in fmap:
   print("Feature: ", feature.getIntensity(), feature.getRT(), feature.getMZ())










ConsensusFeature

Often LC-MS/MS experiments are run to compare quantitative features across
experiments. In OpenMS, linked features from individual experiments are
represented by a ConsensusFeature

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	from pyopenms import *
feature = ConsensusFeature()
feature.setMZ( 500.9 )
feature.setCharge(2)
feature.setRT( 1500.1 )
feature.setIntensity( 80500 )

# Generate ConsensusFeature and features from two maps (with id 1 and 2)
### Feature 1
f_m1 = ConsensusFeature()
f_m1.setRT(500)
f_m1.setMZ(300.01)
f_m1.setIntensity(200)
f_m1.ensureUniqueId()
### Feature 2
f_m2 = ConsensusFeature()
f_m2.setRT(505)
f_m2.setMZ(299.99)
f_m2.setIntensity(600)
f_m2.ensureUniqueId()
feature.insert(1, f_m1 )
feature.insert(2, f_m2 )







We have thus added two features from two individual maps (which have the unique
identifier 1 and 2) to the ConsensusFeature.
Next, we inspect the consensus feature, compute a “consensus” m/z across
the two maps and output the two linked features:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	# The two features in map 1 and map 2 represent the same analyte at
# slightly different RT and m/z
for fh in feature.getFeatureList():
  print(fh.getMapIndex(), fh.getIntensity(), fh.getRT())

print(feature.getMZ())
feature.computeMonoisotopicConsensus()
print(feature.getMZ())

# Generate ConsensusMap and add two maps (with id 1 and 2)
cmap = ConsensusMap()
fds = { 1 : FileDescription(), 2 : FileDescription() }
fds[1].filename = b"file1"
fds[2].filename = b"file2"
cmap.setFileDescriptions(fds)

feature.ensureUniqueId()
cmap.push_back(feature)
ConsensusXMLFile().store("test.consensusXML", cmap)







Inspection of the generated test.consensusXML reveals that it contains
references to two LC-MS/MS runs (file1 and file2) with their respective
unique identifier. Note how the two features we added before have matching
unique identifiers.

Visualization of the resulting output file reveals a single
ConsensusFeature of size 2 that links to the two individual features at
their respective positions in RT and m/z:

[image: _images/consensus.png]



ConsensusMap

The resulting ConsensusMap can be used in various ways to extract
quantitative data directly and it supports direct iteration in Python:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyopenms import *
cmap = ConsensusMap()
ConsensusXMLFile().load("test.consensusXML", cmap)
for cfeature in cmap:
   cfeature.computeConsensus()
   print("ConsensusFeature", cfeature.getIntensity(), cfeature.getRT(), cfeature.getMZ())
   # The two features in map 1 and map 2 represent the same analyte at
   # slightly different RT and m/z
   for fh in cfeature.getFeatureList():
     print(" -- Feature", fh.getMapIndex(), fh.getIntensity(), fh.getRT())













          

      

      

    

  

    
      
          
            
  
Simple Data Manipulation

Here we will look at a few simple data manipulation techniques on spectral
data, such as filtering. First we will download some sample data:

import urllib
from pyopenms import *
urllib.urlretrieve ("http://proteowizard.sourceforge.net/example_data/tiny.pwiz.1.1.mzML",
                    "test.mzML")






Filtering Spectra

We will filter the “test.mzML” file by only retaining spectra that match a
certain identifier:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyopenms import *
inp = MSExperiment()
MzMLFile().load("test.mzML", inp)

e = MSExperiment()
for s in inp:
  if s.getNativeID().startswith("scan="):
    e.addSpectrum(s)

MzMLFile().store("test_filtered.mzML", e)








Filtering by MS level

Similarly, we can filter the test.mzML file by MS level:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyopenms import *
inp = MSExperiment()
MzMLFile().load("test.mzML", inp)

e = MSExperiment()
for s in inp:
  if s.getMSLevel() > 1:
    e.addSpectrum(s)

MzMLFile().store("test_filtered.mzML", e)







Note that we can easily replace line 7 with more complicated criteria, such as
filtering by MS level and scan identifier at the same time:

	7

	if s.getMSLevel() > 1 and s.getNativeID().startswith("scan="):










Filtering by scan number

Or we could use an external list of scan numbers to filter by scan numbers:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyopenms import *
inp = MSExperiment()
MzMLFile().load("test.mzML", inp)
scan_nrs = [0, 2, 5, 7]

e = MSExperiment()
for k, s in enumerate(inp):
  if k in scan_nrs and s.getMSLevel() == 1:
    e.addSpectrum(s)

MzMLFile().store("test_filtered.mzML", e)







It would also be easy to read the scan numbers from a file where each scan
number is on its own line, thus replacing line 4 with:

	4

	scan_nrs = [int(k) for k in open("scan_nrs.txt")]












Filtering Spectra and Peaks

We can now move on to more advanced filtering, suppose you are interested in
only a part of all fragment ion spectra.
m/z. We can easily filter our data accordingly:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from pyopenms import *
inp = MSExperiment()
MzMLFile().load("test.mzML", inp)

mz_start = 6.0
mz_end = 12.0
e = MSExperiment()
for s in inp:
  if s.getMSLevel() > 1:
    filtered_mz = []
    filtered_int = []
    for mz, i in zip(*s.get_peaks()):
      if mz > mz_start and mz < mz_end:
        filtered_mz.append(mz)
        filtered_int.append(i)
    s.set_peaks((filtered_mz, filtered_int))
    e.addSpectrum(s)

MzMLFile().store("test_filtered.mzML", e)







Note that in a real-world application, we would set the mz_start and
mz_end parameter to an actual area of interest, for example the area
between 125 and 132 which contains quantitative ions for a TMT experiment.

Similarly we could change line 13 to only report peaks above a certain
intensity or to only report the top N peaks in a spectrum.




Memory management

On order to save memory, we can avoid loading the whole file into memory and
use the OnDiscMSExperiment for reading data.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyopenms import *
od_exp = OnDiscMSExperiment()
od_exp.openFile("test.mzML")

e = MSExperiment()
for k in range(od_exp.getNrSpectra()):
  s = od_exp.getSpectrum(k)
  if s.getNativeID().startswith("scan="):
    e.addSpectrum(s)

MzMLFile().store("test_filtered.mzML", e)







Note that using the approach the output data e is still completely in
memory and may end up using a substantial amount of memory. We can avoid that
by using

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyopenms import *
od_exp = OnDiscMSExperiment()
od_exp.openFile("test.mzML")

consumer = PlainMSDataWritingConsumer("test_filtered.mzML")

e = MSExperiment()
for k in range(od_exp.getNrSpectra()):
  s = od_exp.getSpectrum(k)
  if s.getNativeID().startswith("scan="):
    consumer.consumeSpectrum(s)

del consumer







Make sure you do not forget del consumer since otherwise the final part of
the mzML may not get written to disk (and the consumer is still waiting for new
data).







          

      

      

    

  

    
      
          
            
  
Parameter Handling

Parameter handling in OpenMS and pyOpenMS is usually implemented through inheritance
from DefaultParamHandler and allow access to parameters through the Param object. This
means, the classes implement the methods getDefaults, getParameters, setParameters
which allows access to the default parameters, the current parameters and allows to set the
parameters.

The Param object that is returned can be manipulated through the setValue and getValue
methods (the exists method can be used to check for existence of a key). Using the
getDescription method, it is possible to get a help-text for each parameter value in an
interactive session without consulting the documentation.

from pyopenms import *
p = Param()
p.setValue("param1", 4.0, "This is value 1")
p.setValue("param2", 5.0, "This is value 2")





The parameters can then be accessed as

>>> p.asDict()
{'param2': 4.0, 'param1': 4.0}
>>> p.values()
[4.0, 4.0]
>>> p.keys()
['param1', 'param2']
>>> p.items()
[('param1', 4.0), ('param2', 4.0)]









          

      

      

    

  

    
      
          
            
  
Algorithms

Most signal processing algorithms follow a similar pattern in OpenMS.

filter = FilterObject()
exp = MSExperiment()
# populate exp
filter.filterExperiment(exp)





Since they work on a single MSExperiment object, little input is needed to
execute a filter directly on the data. Examples of filters that follow this
pattern are GaussFilter, SavitzkyGolayFilter as well as the spectral filters
BernNorm, MarkerMower, NLargest, Normalizer, ParentPeakMower, Scaler,
SpectraMerger, SqrtMower, ThresholdMower, WindowMower.

using the same example file as before in

from pyopenms import *
exp = MSExperiment()
gf = GaussFilter()
MzMLFile().load("test.mzML", exp)
gf.filterExperiment(exp)
MzMLFile().store("test.filtered.mzML", exp)









          

      

      

    

  

    
      
          
            
  
Feature Detection

One very common task in Mass Spectrometric research is the detection of 2D features in a series of MS1 scans (MS1 feature detection). OpenMS has multiple tools that can achieve these tasks, these tools are called FeatureFinder. Currently the following FeatureFinders are available in OpenMS:



	FeatureFinderMultiplex


	FeatureFinderMRM


	FeatureFinderCentroided


	FeatureFinderIdentification


	FeatureFinderIsotopeWavelet


	FeatureFinderMetabo


	FeatureFinderSuperHirn







One of the most commonly used FeatureFinders is the FeatureFinderCentroided
which works on (high resolution) centroided data. We can use the following code
to find Features in MS data:

from pyopenms import *

# Prepare data loading (save memory by only
# loading MS1 spectra into memory)
options = PeakFileOptions()
options.setMSLevels([1])
fh = MzMLFile()
fh.setOptions(options)

# Load data
input_map = MSExperiment()
fh.load("test.mzML", input_map)
input_map.updateRanges()

ff = FeatureFinder()
ff.setLogType(LogType.CMD)

# Run the feature finder
features = FeatureMap()
seeds = FeatureMap()
params = FeatureFinder().getParameters("centroided")
ff.run(name, input_map, features, params, seeds)

features.setUniqueIds()
fh = FeatureXMLFile()
fh.store("output.featureXML", features)
print("Found", features.size(), "features")





You can get a sample file for analysis directly from here [https://raw.githubusercontent.com/OpenMS/OpenMS/develop/src/tests/topp/FeatureFinderCentroided_1_input.mzML].

With a few lines of Python, we are able to run powerful algorithms available in
OpenMS. The resulting data is held in memory (a FeatureMap object) and can be
inspected directly using the help(features) comment. It reveals that the
object supports iteration (through the __iter__ function) as well as direct
access (through the __getitem__ function).  We can also inspect the entry
for FeatureMap in the pyOpenMS manual [http://proteomics.ethz.ch/pyOpenMS_Manual.pdf] and learn about the same
functions. This means we write code that uses direct access and iteration in
Python as follows:

f0 = features[0]
for f in features:
    print f.getRT(), f.getMZ()





Each entry in the FeatureMap is a so-called Feature and allows direct
access to the m/z and RT value from Python. Again, we can lear this by
inspecting help(f) or by consulting the Manual.

Note: the output file that we have written (output.featureXML) is an
OpenMS-internal XML format for storing features. You can learn more about file
formats in the Reading MS data formats section.





          

      

      

    

  

    
      
          
            
  
Build from source

To install pyOpenMS from source, you will first have to compile OpenMS
successfully on your platform of choice (note that for MS Windows you will need
to match your compiler and Python version). Please follow the official
documenation [http://ftp.mi.fu-berlin.de/pub/OpenMS/release-documentation/html/index.html]
in order to compile OpenMS for your platform. Next you will need to install the
following software packages

On Microsoft Windows: you need the 64 bit C++ compiler from Visual Studio 2015
to compile the newest pyOpenMS for Python 3.5 or 3.6. This is important, else
you get a different clib than Python 2.7 is built with, and pyOpenMS will crash
on import.

You can install all necessary Python packages on which pyOpenMS
depends through

pip install -U setuptools
pip install -U pip
pip install -U autowrap
pip install -U nose
pip install -U numpy
pip install -U wheel





Depending on your systems setup, it may make sense to do this inside a virtual environment

virtualenv pyopenms_venv
source pyopenms_venv/bin/activate





Next, configure OpenMS with pyOpenMS: execute cmake as usual, but with
parameters DPYOPENMS=ON. Also, if using virtualenv or using a specific
Python version, add -DPYTHON_EXECUTABLE:FILEPATH=/path/to/python to ensure
that the correct Python executable is used. Compiling pyOpenMS can use a lot of
memory and take some time, however you can reduce the memory consumption by
breaking up the compilation into multiple units and compiling in parallel, for
example -DPY_NUM_THREADS=2 -DPY_NUM_MODULES=4 will build 4 modules with 2
threads. You can then configure pyOpenMS:

cmake -DPYOPENMS=ON
make pyopenms





Build pyOpenMS (now there should be pyOpenMS specific build targets).
Afterwards, test that all wen well by running the tests:

ctest -R pyopenms





Which should execute all the tests and return with all tests passing.


Further questions

In case the above instructions did not work, please refer to the Wiki Page [https://github.com/OpenMS/OpenMS/wiki/pyOpenMS], contact the development
team on github or send an email to the OpenMS mailing list.







          

      

      

    

  

    
      
          
            
  
Wrapping Workflow and wrapping new Classes


How pyOpenMS wraps Python classes

General concept of how the wrapping is done (all files are in src/pyOpenMS/):


	Step 1: The author declares which classes and which functions of these
classes s/he wants to wrap (expose to Python). This is done by writing the
function declaration in a file in the pxds/ folder.


	Step 2: The Python tool “autowrap” (developed for this project) creates the
wrapping code automatically from the function declaration - see
https://github.com/uweschmitt/autowrap for an explanation of the autowrap
tool.
Since not all code can be wrapped automatically, also manual code can be
written in the addons/ folder. Autowrap will create an output file at
pyopenms/pyopenms.pyx which can be interpreted by Cython.


	Step 3: Cython translates the pyopenms/pyopenms.pyx to C++ code at
pyopenms/pyopenms.cpp


	Step 4: A compiler compiles the C++ code to a Python module which is then
importable in Python with import pyopenms




Maintaining existing wrappers: If the C++ API is changed, then pyOpenMS will
not build any more.  Thus, find the corresponding file in the pyOpenMS/pxds/
folder and adjust the function declaration accordingly.




How to wrap new methods in existing classes

Lets say you have written a new method for an existing OpenMS class and you
would like to expose this method to pyOpenMS. First, identify the correct
.pxd file in the src/pyOpenMS/pxds folder (for example for
Adduct that would be Adduct.pxd [https://github.com/OpenMS/OpenMS/blob/develop/src/pyOpenMS/pxds/Adduct.pxd]).
Open it and add your new function with the correct indentation:


	Place the full function declaration into the file (indented as the other functions)


	Check whether you are using any classes that are not yet imported, if so add a corresponding cimport statement to the top of the file. E.g. if your method is using using MSExperiment, then add from MSExerpiment cimport * to the top (note its cimport, not import).


	Remove any qualifiers (e.g. const) from the function signature and add nogil except + to the end of the signature


	Ex: void setType(Int a); becomes void setType(Int a) nogil except +


	Ex: const T& getType() const; becomes T getType() nogil except +






	Remove any qualifiers (e.g. const) from the argument signatures, but leave reference and pointer indicators



	Ex: const T& becomes T, preventing an additional copy operation


	Ex: T& will stay T& (indicating T needs to copied back to Python)


	Ex: T* will stay T* (indicating T needs to copied back to Python)


	One exception is OpenMS::String, you can leave const String& as-is









	STL constructs are replaced with Cython constructs: std::vector<X> becomes libcpp_vector[ X ] etc.


	Most complex STL constructs can be wrapped even if they are nested, however mixing them with user-defined types does not always work, see Limitations below. Nested std::vector constructs work well even with user-defined (OpenMS-defined) types. However, std::map<String, X> does not work (since String is user-defined, however a primitive C++ type such as std::map<std::string, X> would work).


	Python cannot pass primitive data types by reference (therefore no int& res1)


	Replace boost::shared_ptr<X> with shared_ptr[X] and add from smart_ptr cimport shared_ptr to the top


	Public members are simply added with  Type member_name


	You can inject documentation that will be shown when calling help() in the function by adding wrap-doc:Your documentation as a comment after the function:


	Ex: void modifyWidget() nogil except + #wrap-doc:This changes your widget








See the next section for a SimpleExample and a more AdvancedExample of a wrapped class with several functions.




How to wrap new classes


A simple example

To wrap a new OpenMS class: Create a new “.pxd” file in the folder ./pxds. As
a small example, look at the Adduct.pxd [https://github.com/OpenMS/OpenMS/blob/develop/src/pyOpenMS/pxds/Adduct.pxd]
to get you started. Start with the following structure:

from xxx cimport *
cdef extern from "<OpenMS/path/to/header/Classname.h>" namespace "OpenMS":

    cdef cppclass ClassName(DefaultParamHandler):
        # wrap-inherits:
        #    DefaultParamHandler

        ClassName() nogil except +
        ClassName(ClassName) nogil except +

        Int getValue() nogil except + #wrap-doc:Gets value (between 0 and 5)
        void setValue(Int v) nogil except + #wrap-doc:Sets value (between 0 and 5)






	make sure to use ClassName: instead of ClassName(DefaultParamHandler): to
wrap a class that does not inherit from another class and also remove the two
comments regarding inheritance below that line.


	always use cimport and not Python import


	always add default constructor AND copy constructor to the code (note that the C++
compiler will add a default copy constructor to any class)


	to expose a function to Python, copy the signature to your pxd file, e.g.
DataValue getValue() and make sure you cimport all corresponding classes.
Replace std::vector with the corresponding Cython vector, in this case
libcpp_vector (see for example PepXMLFile.pxd [https://github.com/OpenMS/OpenMS/blob/develop/src/pyOpenMS/pxds/PepXMLFile.pxd])


	Remember to include a copy constructor (even if none was declared in the C++
header file) since Cython will need it for certain operations. Otherwise you
might see error messages like item2.inst = shared_ptr[_ClassName](new _ClassName(deref(it_terms))) Call with wrong number of arguments.


	you can add documentation that will show up in the interactive Python documentation (using help()) using the wreap-doc qualifier







A further example

A slightly more complicated class could look like this, where we demonstrate
how to handle a templated class with template T and static methods:

from xxx cimport *
from AbstractBaseClass cimport *
from AbstractBaseClassImpl1 cimport *
from AbstractBaseClassImpl2 cimport *
cdef extern from "<OpenMS/path/to/header/Classname.h>" namespace "OpenMS":

    cdef cppclass ClassName[T](DefaultParamHandler):
        # wrap-inherits:
        #    DefaultParamHandler
        #
        # wrap-instances:
        #   ClassName := ClassName[X]
        #   ClassNameY := ClassName[Y]

        ClassName() nogil except +
        ClassName(ClassName[T]) nogil except + # wrap-ignore

        void method_name(int param1, double param2) nogil except +
        T method_returns_template_param() nogil except +

        size_t size() nogil except +
        T operator[](int) nogil except + # wrap-upper-limit:size()

        libcpp_vector[T].iterator begin() nogil except +  # wrap-iter-begin:__iter__(T)
        libcpp_vector[T].iterator end()   nogil except +  # wrap-iter-end:__iter__(T)

        void getWidgets(libcpp_vector[String] & keys) nogil except +
        void getWidgets(libcpp_vector[unsigned int] & keys) nogil except + # wrap-as:getWAsInt

        # C++ signature: void process(AbstractBaseClass * widget)
        void process(AbstractBaseClassImpl1 * widget) nogil except +
        void process(AbstractBaseClassImpl2 * widget) nogil except +

cdef extern from "<OpenMS/path/to/header/Classname.h>" namespace "OpenMS::Classname<OpenMS::X>":

    void static_method_name(int param1, double param2) nogil except + # wrap-attach:ClassName

cdef extern from "<OpenMS/path/to/header/Classname.h>" namespace "OpenMS::Classname<OpenMS::Y>":

    void static_method_name(int param1, double param2) nogil except + # wrap-attach:ClassNameY





Here the copy constructor will not be wrapped but the Cython parser will import
it from C++ so that is is present (using wrap-ignore). The operator[]
will return an object of type X or Y depending on the template
argument T and contain a guard that the number may not be exceed size().

The wrapping of iterators allows for iteration over the objects inside the
Classname container using the appropriate Python function (here
__iter__ with the indicated return type T).

The wrap-as keyword allows the Python function to assume a different
name.

Note that pointers to abstract base classes can be passed as arguments but the
classes have to be known at compile time, e.g. the function process
takes a pointer to AbstractBaseClass which has two known
implementations AbstractBaseClassImpl1 and
AbstractBaseClassImpl2. Then, the function needs to declared and
overloaded with both implementations as arguments as shown above.




An example with handwritten addon code

A more complex examples requires some hand-written wrapper code
(pxds/Classname.pxd), for example for singletons that implement a getInstance()
method that returns a pointer to the singleton resource. Note that in this case
it is quite important to not let autowrap take over the pointer and possibly
delete it when the lifetime of the Python object ends. This is done through
wrap-manual-memory and failing to doing so could lead to segmentation
faults in the program.

from xxx cimport *
cdef extern from "<OpenMS/path/to/header/Classname.h>" namespace "OpenMS":

    cdef cppclass ModificationsDB "OpenMS::ModificationsDB":
        # wrap-manual-memory
        # wrap-hash:
        #   getFullId().c_str()

        ClassName(ClassName[T]) nogil except + # wrap-ignore

        void method_name(int param1, double param2) nogil except +

        int process(libcpp_vector[Peak1D].iterator, libcpp_vector[Peak1D].iterator) nogil except + # wrap-ignore

cdef extern from "<OpenMS/path/to/header/Classname.h>" namespace "OpenMS::Classname":

    const ClassName* getInstance() nogil except + # wrap-ignore





Here the wrap-manual-memory keyword indicates that memory management
will be handled manually and autowrap can assume that a member called
inst will be provided which implements a gets() method to
obtain a pointer to an object of C++ type Classname.

We then have to provide such an object (addons/Classname.pyx):

# This will go into the header (no empty lines below is *required*)
# NOTE: _Classname is the C++ class while Classname is the Python class
from Classname cimport Classname as _Classname
cdef class ClassnameWrapper:
    # A small utility class holding a ptr and implementing get()
    cdef const _Classname* wrapped
    cdef setptr(self, const _Classname* wrapped): self.wrapped = wrapped
    cdef const _Classname* get(self) except *: return self.wrapped

    # This will go into the class (after the first empty line)
    # NOTE: we use 4 spaces indent
    # NOTE: using shared_ptr for a singleton will lead to segfaults, use raw ptr instead
    cdef ClassnameWrapper inst

    def __init__(self):
      self.inst = ClassnameWrapper()
      # the following require some knowledge of the internals of autowrap:
      # we call the getInstance method to obtain raw ptr
      self.inst.setptr(_getInstance_Classname())

    def __dealloc__(self):
      # Careful here, the wrapped ptr is a single instance and we should not
      # reset it (which is why we used 'wrap-manual-dealloc')
      pass

    def process(self, Container c):
      # An example function here (processing Container c):
      return self.inst.get().process(c.inst.get().begin(), c.inst.get().end())





Note how the manual wrapping of the process functions allows us to
access the inst pointer of the argument as well as of the object
itself, allowing us to call C++ functions on both pointers. This makes it easy
to generate the required iterators and process the container efficiently.




Considerations and limitations

Further considerations and limitations:


	Inheritance: there are some limitations, see for example Precursor.pxd


	Reference: arguments by reference may be copied under some circumstances. For
example, if they are in an array then not the original argument is handed
back, so comparisons might fail. Also, simple Python types like int, float
etc cannot be passed by reference.


	operator+=: see for example AASequence.iadd in AASequence.pxd


	operator==, !=, <=, <, >=, > are wrapped automatically


	Iterators: some limitations apply, see MSExperiment.pxd for an example


	copy-constructor becomes __copy__ in Python


	shared pointers: is handled automatically, check DataAccessHelper using shared_ptr[Spectrum]. Use from smart_ptr cimport shared_ptr as import statement




These hints can be given to autowrap classes (also check the autowrap documentation):


	wrap-ignore is a hint for autowrap to not wrap the class (but the declaration might still be important for Cython to know about)


	wrap-instances: for templated classes (see MSSpectrum.pxd)


	wrap-hash: hash function to use for __hash__ (see Residue.pxd)


	wrap-manual-memory: hint that memory management will be done manually




These hints can be given to autowrap functions (also check the autowrap documentation):


	wrap-ignore is a hint for autowrap to not wrap the function (but the declaration might still be important for Cython to know about)


	wrap-as: see for example AASequence


	wrap-iter-begin:, wrap-iter-end: (see ConsensusMap.pxd)


	wrap-attach: enums, static methods (see for example VersionInfo.pxd)


	wrap-upper-limit:size() (see MSSpectrum.pxd)







Wrapping code yourself in ./addons

Not all code can be wrapped automatically (yet). Place a file with the same (!)
name in the addons folder (e.g. myClass.pxd in pxds/ and myClass.pyx in addons/)
and leave two lines empty on the top (this is important). Start with 4 spaces
of indent and write your additional wrapper functions, adding a wrap-ignore
comment to the pxd file. See the example above, some additional examples, look into the src/pyOpenMS/addons/ folder:


	IDRipper.pyx [https://github.com/OpenMS/OpenMS/blob/develop/src/pyOpenMS/addons/IDRipper.pyx]


	for an example of both input and output of a complex STL construct (map< String, pair<vector<>, vector<> > )






	MSQuantifications.pyx [https://github.com/OpenMS/OpenMS/blob/develop/src/pyOpenMS/addons/MSQuantifications.pyx]


	for a vector< vector< pair <String,double > > > as input in registerExperiment


	for a map< String, Ratio> in getRatios to get returned






	QcMLFile.pyx [https://github.com/OpenMS/OpenMS/blob/develop/src/pyOpenMS/addons/QcMLFile.pyx]
- for a map< String, map< String,String> > as input


	SequestInfile.pyx [https://github.com/OpenMS/OpenMS/blob/develop/src/pyOpenMS/addons/SequestInfile.pyx]


	for a map< String, vector<String> > to get returned






	Attachment.pyx [https://github.com/OpenMS/OpenMS/blob/develop/src/pyOpenMS/addons/Attachment.pyx]


	for a vector< vector<String> > to get returned






	ChromatogramExtractorAlgorithm.pxd [https://github.com/OpenMS/OpenMS/blob/develop/src/pyOpenMS/pxds/ChromatogramExtractorAlgorithm.pxd]


	for an example of an abstract base class (ISpectrumAccess) in the function
extractChromatograms - this is solved by copy-pasting the function
multiple times for each possible implementation of the abstract base class.








Make sure that you always declare your objects (all C++ and all Cython
objects need to be declared) using cdef Type name. Otherwise you get Cannot
convert ... to Python object errors.
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