LocalLinearMap#

class pyopenms.LocalLinearMap#

Bases: object

Cython implementation of _LocalLinearMap

Original C++ documentation is available here

Trained Local Linear Map (LLM) model for peak intensity prediction

This class offers a model for predictions of peptide peak heights (referred to as intensities) by a Local Linear Map (LLM) model and is the basis of PeakIntensityPredictor

A general introduction to the Peak Intensity Predictor (PIP) can be found in the PIP Tutorial

The model trained needs two files for storing the position of the codebook vectors and the linear mappings (codebooks.data, linearMapping.data) This is the default model used by PeakIntensityPredictor

__init__(self) None#

Methods

__init__(self)

getCodebooks(self)

Returns position of the codebook vectors (18-dim)

getLLMParam(self)

Returns parameters of the LocalLinearMap model

getMatrixA(self)

Returns linear mappings of the codebooks

getVectorWout(self)

Returns linear bias

normalizeVector(self, aaIndexVariables)

Calculates and returns the normalized amino acid index variables from string representation of peptide

getCodebooks(self) MatrixDouble#

Returns position of the codebook vectors (18-dim)

getLLMParam(self) LLMParam#

Returns parameters of the LocalLinearMap model

getMatrixA(self) MatrixDouble#

Returns linear mappings of the codebooks

getVectorWout(self) List[float]#

Returns linear bias

normalizeVector(self, aaIndexVariables: List[float]) None#

Calculates and returns the normalized amino acid index variables from string representation of peptide