OfflinePrecursorIonSelection#

class pyopenms.OfflinePrecursorIonSelection#

Bases: object

Cython implementation of _OfflinePrecursorIonSelection

Original C++ documentation is available here

– Inherits from [‘DefaultParamHandler’]

__init__()#

Overload:

__init__(self) None

Overload:

__init__(self, in_0: OfflinePrecursorIonSelection) None

Methods

__init__

Overload:

createProteinSequenceBasedLPInclusionList(...)

getDefaults(self)

Returns the default parameters

getLPSolver(self)

getName(self)

Returns the name

getParameters(self)

Returns the parameters

getSubsections(self)

makePrecursorSelectionForKnownLCMSMap(self, ...)

Makes the precursor selection for a given feature map, either feature or scan based

setLPSolver(self, solver)

setName(self, in_0)

Sets the name

setParameters(self, param)

Sets the parameters

createProteinSequenceBasedLPInclusionList(self, include_: bytes | str | String, rt_model_file: bytes | str | String, pt_model_file: bytes | str | String, precursors: FeatureMap) None#
getDefaults(self) Param#

Returns the default parameters

getLPSolver(self) int#
getName(self) bytes | str | String#

Returns the name

getParameters(self) Param#

Returns the parameters

getSubsections(self) List[bytes]#
makePrecursorSelectionForKnownLCMSMap(self, features: FeatureMap, experiment: MSExperiment, ms2: MSExperiment, charges_set: Set[int], feature_based: bool) None#

Makes the precursor selection for a given feature map, either feature or scan based

Parameters:
  • features – Input feature map

  • experiment – Input raw data

  • ms2 – Precursors are added as empty MS2 spectra to this MSExperiment

  • charges_set – Allowed charge states

  • feature_based – If true the selection is feature based, if false it is scan based and the highest signals in each spectrum are chosen

setLPSolver(self, solver: int) None#
setName(self, in_0: bytes | str | String) None#

Sets the name

setParameters(self, param: Param) None#

Sets the parameters