OfflinePrecursorIonSelection#
- class pyopenms.OfflinePrecursorIonSelection#
Bases:
object
Cython implementation of _OfflinePrecursorIonSelection
- Original C++ documentation is available here
– Inherits from [‘DefaultParamHandler’]
- __init__()#
Overload:
- __init__(self) None
Overload:
- __init__(self, in_0: OfflinePrecursorIonSelection) None
Methods
Overload:
getDefaults
(self)Returns the default parameters
getLPSolver
(self)getName
(self)Returns the name
getParameters
(self)Returns the parameters
getSubsections
(self)makePrecursorSelectionForKnownLCMSMap
(self, ...)Makes the precursor selection for a given feature map, either feature or scan based
setLPSolver
(self, solver)setName
(self, in_0)Sets the name
setParameters
(self, param)Sets the parameters
- createProteinSequenceBasedLPInclusionList(self, include_: bytes | str | String, rt_model_file: bytes | str | String, pt_model_file: bytes | str | String, precursors: FeatureMap) None #
- getLPSolver(self) int #
- getSubsections(self) List[bytes] #
- makePrecursorSelectionForKnownLCMSMap(self, features: FeatureMap, experiment: MSExperiment, ms2: MSExperiment, charges_set: Set[int], feature_based: bool) None #
Makes the precursor selection for a given feature map, either feature or scan based
- Parameters:
features – Input feature map
experiment – Input raw data
ms2 – Precursors are added as empty MS2 spectra to this MSExperiment
charges_set – Allowed charge states
feature_based – If true the selection is feature based, if false it is scan based and the highest signals in each spectrum are chosen
- setLPSolver(self, solver: int) None #