PSLPFormulation#
- class pyopenms.PSLPFormulation#
Bases:
object
Cython implementation of _PSLPFormulation
- Original C++ documentation is available here
– Inherits from [‘DefaultParamHandler’]
- __init__()#
Overload:
- __init__(self) None
Overload:
- __init__(self, in_0: PSLPFormulation) None
Methods
Overload:
Find a set of precursors, so that the protein coverage is maximal and that the number of precursors per bin is not exceeded
Encode ILP formulation for a given LC-MS map, but unknown protein sample
getDefaults
(self)Returns the default parameters
getLPSolver
(self)getName
(self)Returns the name
getParameters
(self)Returns the parameters
getSubsections
(self)setLPSolver
(self, solver)setName
(self, in_0)Sets the name
setParameters
(self, param)Sets the parameters
solveILP
(self, solution_indices)Solve the ILP
updateRTConstraintsForSequentialILP
(self, ...)updateStepSizeConstraint
(self, iteration, ...)- createAndSolveILPForInclusionListCreation(self, preprocessing: PrecursorIonSelectionPreprocessing, ms2_spectra_per_rt_bin: int, max_list_size: int, precursors: FeatureMap, solve_ILP: bool) None #
Find a set of precursors, so that the protein coverage is maximal and that the number of precursors per bin is not exceeded
- createAndSolveILPForKnownLCMSMapFeatureBased(self, features: FeatureMap, experiment: MSExperiment, variable_indices: List[IndexTriple], mass_ranges: List[List[List[int, int]]], charges_set: Set[int], ms2_spectra_per_rt_bin: int, solution_indices: List[int]) None #
Encode ILP formulation for a given LC-MS map, but unknown protein sample
- Parameters:
features – FeatureMap with all possible precursors
experiment – Input raw data
variable_indices – Assignment of feature indices and ILP variables
mass_ranges – Feature borders as indices in the raw data
charges_set – Allowed charge states
ms2_spectra_per_rt_bin – Allowed number of precursors per rt bin
solution_indices – Indices of ILP variables that are in the optimal solution
- getLPSolver(self) int #
- getSubsections(self) List[bytes] #
- setLPSolver(self, solver: int) None #
- solveILP(self, solution_indices: List[int]) None #
Solve the ILP
- updateRTConstraintsForSequentialILP(self, rt_index: int, ms2_spectra_per_rt_bin: int, max_rt_index: int) None #
- updateStepSizeConstraint(self, iteration: int, step_size: int) None #