PrecursorIonSelection#
- class pyopenms.PrecursorIonSelection#
Bases:
object
Cython implementation of _PrecursorIonSelection
- Original C++ documentation is available here
– Inherits from [‘DefaultParamHandler’]
- __init__()#
Overload:
- __init__(self) None
Overload:
- __init__(self, in_0: PrecursorIonSelection) None
Methods
Overload:
getDefaults
(self)Returns the default parameters
getLPSolver
(self)getMaxScore
(self)getName
(self)Returns the name
Overload:
getParameters
(self)Returns the parameters
getSubsections
(self)rescore
(self, features, new_pep_ids, ...)Change scoring of features using peptide identifications from all spectra
reset
(self)setLPSolver
(self, solver)setMaxScore
(self, max_score)setName
(self, in_0)Sets the name
setParameters
(self, param)Sets the parameters
simulateRun
(self, features, pep_ids, ...)Simulate the iterative precursor ion selection
sortByTotalScore
(self, features)Sort features by total score
- PrecursorIonSelection_Type#
alias of
__PrecursorIonSelection_Type
- getLPSolver(self) int #
- getMaxScore(self) float #
- getNextPrecursors()#
Overload:
- getNextPrecursors(self, features: FeatureMap, next_features: FeatureMap, number: int) None
Returns features with highest score for MS/MS
- Parameters:
features – FeatureMap with all possible precursors
next_features – FeatureMap with next precursors
number – Number of features to be reported
Overload:
- getNextPrecursors(self, solution_indices: List[int], variable_indices: List[IndexTriple], measured_variables: Set[int], features: FeatureMap, new_features: FeatureMap, step_size: int, ilp: PSLPFormulation) None
- getSubsections(self) List[bytes] #
- rescore(self, features: FeatureMap, new_pep_ids: List[PeptideIdentification], prot_ids: List[ProteinIdentification], preprocessed_db: PrecursorIonSelectionPreprocessing, check_meta_values: bool) None #
Change scoring of features using peptide identifications from all spectra
- Parameters:
features – FeatureMap with all possible precursors
new_pep_ids – Peptide identifications
prot_ids – Protein identifications
preprocessed_db – Information from preprocessed database
check_meta_values – True if the FeatureMap should be checked for the presence of required meta values
- reset(self) None #
- setLPSolver(self, solver: int) None #
- setMaxScore(self, max_score: float) None #
- simulateRun(self, features: FeatureMap, pep_ids: List[PeptideIdentification], prot_ids: List[ProteinIdentification], preprocessed_db: PrecursorIonSelectionPreprocessing, path: bytes | str | String, experiment: MSExperiment, precursor_path: bytes | str | String) None #
Simulate the iterative precursor ion selection
- Parameters:
features – FeatureMap with all possible precursors
new_pep_ids – Peptide identifications
prot_ids – Protein identifications
preprocessed_db – Information from preprocessed database
step_size – Number of MS/MS spectra considered per iteration
path – Path to output file
- sortByTotalScore(self, features: FeatureMap) None #
Sort features by total score