PrecursorIonSelection#

class pyopenms.PrecursorIonSelection#

Bases: object

Cython implementation of _PrecursorIonSelection

Original C++ documentation is available here

– Inherits from [‘DefaultParamHandler’]

__init__()#

Overload:

__init__(self) None

Overload:

__init__(self, in_0: PrecursorIonSelection) None

Methods

__init__

Overload:

getDefaults(self)

Returns the default parameters

getLPSolver(self)

getMaxScore(self)

getName(self)

Returns the name

getNextPrecursors

Overload:

getParameters(self)

Returns the parameters

getSubsections(self)

rescore(self, features, new_pep_ids, ...)

Change scoring of features using peptide identifications from all spectra

reset(self)

setLPSolver(self, solver)

setMaxScore(self, max_score)

setName(self, in_0)

Sets the name

setParameters(self, param)

Sets the parameters

simulateRun(self, features, pep_ids, ...)

Simulate the iterative precursor ion selection

sortByTotalScore(self, features)

Sort features by total score

PrecursorIonSelection_Type#

alias of __PrecursorIonSelection_Type

getDefaults(self) Param#

Returns the default parameters

getLPSolver(self) int#
getMaxScore(self) float#
getName(self) bytes | str | String#

Returns the name

getNextPrecursors()#

Overload:

getNextPrecursors(self, features: FeatureMap, next_features: FeatureMap, number: int) None

Returns features with highest score for MS/MS

Parameters:
  • features – FeatureMap with all possible precursors

  • next_features – FeatureMap with next precursors

  • number – Number of features to be reported

Overload:

getNextPrecursors(self, solution_indices: List[int], variable_indices: List[IndexTriple], measured_variables: Set[int], features: FeatureMap, new_features: FeatureMap, step_size: int, ilp: PSLPFormulation) None
getParameters(self) Param#

Returns the parameters

getSubsections(self) List[bytes]#
rescore(self, features: FeatureMap, new_pep_ids: List[PeptideIdentification], prot_ids: List[ProteinIdentification], preprocessed_db: PrecursorIonSelectionPreprocessing, check_meta_values: bool) None#

Change scoring of features using peptide identifications from all spectra

Parameters:
  • features – FeatureMap with all possible precursors

  • new_pep_ids – Peptide identifications

  • prot_ids – Protein identifications

  • preprocessed_db – Information from preprocessed database

  • check_meta_values – True if the FeatureMap should be checked for the presence of required meta values

reset(self) None#
setLPSolver(self, solver: int) None#
setMaxScore(self, max_score: float) None#
setName(self, in_0: bytes | str | String) None#

Sets the name

setParameters(self, param: Param) None#

Sets the parameters

simulateRun(self, features: FeatureMap, pep_ids: List[PeptideIdentification], prot_ids: List[ProteinIdentification], preprocessed_db: PrecursorIonSelectionPreprocessing, path: bytes | str | String, experiment: MSExperiment, precursor_path: bytes | str | String) None#

Simulate the iterative precursor ion selection

Parameters:
  • features – FeatureMap with all possible precursors

  • new_pep_ids – Peptide identifications

  • prot_ids – Protein identifications

  • preprocessed_db – Information from preprocessed database

  • step_size – Number of MS/MS spectra considered per iteration

  • path – Path to output file

sortByTotalScore(self, features: FeatureMap) None#

Sort features by total score