SVMWrapper#
- class pyopenms.SVMWrapper#
Bases:
object
Cython implementation of _SVMWrapper
Original C++ documentation is available here
- __init__()#
Overload:
- __init__(self) None
Overload:
- __init__(self, in_0: SVMWrapper) None
Methods
Overload:
calculateGaussTable
(self, border_length, ...)createRandomPartitions
(self, problem, ...)getDoubleParameter
(self, type_)getIntParameter
(self, type_)getPValue
(self, sigma1, sigma2, point)getSVRProbability
(self)getSignificanceBorders
(self, data, sigmas, ...)loadModel
(self, modelFilename)The svm-model is loaded.
mergePartitions
(self, problems, except_, ...)predict
(self, problem, results)The prediction process is started and the results are stored in 'predicted_labels'
saveModel
(self, modelFilename)The model of the trained svm is saved into 'modelFilename'
Overload:
setTrainingSample
(self, training_sample)setWeights
(self, weight_labels, weights)train
(self, problem)The svm is trained with the data stored in the 'svm_problem' structure
- SVM_kernel_type#
alias of
__SVM_kernel_type
- SVM_parameter_type#
alias of
__SVM_parameter_type
- calculateGaussTable(self, border_length: int, sigma: float, gauss_table: List[float]) None #
- getDoubleParameter(self, type_: int) float #
- getIntParameter(self, type_: int) int #
- getPValue(self, sigma1: float, sigma2: float, point: List[float, float]) float #
- getSVRProbability(self) float #
- getSignificanceBorders(self, data: SVMData, sigmas: List[float, float], confidence: float, number_of_runs: int, number_of_partitions: int, step_size: float, max_iterations: int) None #
- loadModel(self, modelFilename: bytes | str | String) None #
The svm-model is loaded. After this, the svm is ready for prediction
- predict(self, problem: SVMData, results: List[float]) None #
The prediction process is started and the results are stored in ‘predicted_labels’
- saveModel(self, modelFilename: bytes | str | String) None #
The model of the trained svm is saved into ‘modelFilename’
- setParameter()#
Overload:
- setParameter(self, type_: int, value: int) None
Overload:
- setParameter(self, type_: int, value: float) None
- setWeights(self, weight_labels: List[int], weights: List[float]) None #