SVMWrapper#

class pyopenms.SVMWrapper#

Bases: object

Cython implementation of _SVMWrapper

Original C++ documentation is available here

__init__()#

Overload:

__init__(self) None

Overload:

__init__(self, in_0: SVMWrapper) None

Methods

__init__

Overload:

calculateGaussTable(self, border_length, ...)

createRandomPartitions(self, problem, ...)

getDoubleParameter(self, type_)

getIntParameter(self, type_)

getPValue(self, sigma1, sigma2, point)

getSVRProbability(self)

getSignificanceBorders(self, data, sigmas, ...)

loadModel(self, modelFilename)

The svm-model is loaded.

mergePartitions(self, problems, except_, ...)

predict(self, problem, results)

The prediction process is started and the results are stored in 'predicted_labels'

saveModel(self, modelFilename)

The model of the trained svm is saved into 'modelFilename'

setParameter

Overload:

setTrainingSample(self, training_sample)

setWeights(self, weight_labels, weights)

train(self, problem)

The svm is trained with the data stored in the 'svm_problem' structure

SVM_kernel_type#

alias of __SVM_kernel_type

SVM_parameter_type#

alias of __SVM_parameter_type

calculateGaussTable(self, border_length: int, sigma: float, gauss_table: List[float]) None#
createRandomPartitions(self, problem: SVMData, number: int, problems: List[SVMData]) None#
getDoubleParameter(self, type_: int) float#
getIntParameter(self, type_: int) int#
getPValue(self, sigma1: float, sigma2: float, point: List[float, float]) float#
getSVRProbability(self) float#
getSignificanceBorders(self, data: SVMData, sigmas: List[float, float], confidence: float, number_of_runs: int, number_of_partitions: int, step_size: float, max_iterations: int) None#
loadModel(self, modelFilename: bytes | str | String) None#

The svm-model is loaded. After this, the svm is ready for prediction

mergePartitions(self, problems: List[SVMData], except_: int, merged_problem: SVMData) None#
predict(self, problem: SVMData, results: List[float]) None#

The prediction process is started and the results are stored in ‘predicted_labels’

saveModel(self, modelFilename: bytes | str | String) None#

The model of the trained svm is saved into ‘modelFilename’

setParameter()#

Overload:

setParameter(self, type_: int, value: int) None

Overload:

setParameter(self, type_: int, value: float) None
setTrainingSample(self, training_sample: SVMData) None#
setWeights(self, weight_labels: List[int], weights: List[float]) None#
train(self, problem: SVMData) int#

The svm is trained with the data stored in the ‘svm_problem’ structure