ConsensusMap#
- class pyopenms.ConsensusMap(*args, **kwargs)#
Bases:
ConsensusMap
- __init__(*args, **kwargs)#
Overload:
- __init__(self) None
Overload:
- __init__(self, in_0: ConsensusMap) None
Methods
__init__
(*args, **kwargs)Overload:
appendColumns
(self, in_0)Add consensus map entries as new columns
appendRows
(self, in_0)Add consensus map entries as new rows
Overload:
clearMetaInfo
(self)Removes all meta values
clearRanges
(self)Resets all range dimensions as empty
clearUniqueId
(self)Clear the unique id.
empty
(self)ensureUniqueId
(self)Assigns a valid unique id, but only if the present one is invalid.
getDataProcessing
(self)Returns a const reference to the description of the applied data processing
getExperimentType
(self)Non-mutable access to the experiment type
getIdentifier
(self)Retrieve document identifier (e.g.
getKeys
(self, keys)Fills the given vector with a list of all keys for which a value is set
getLoadedFilePath
(self)Returns the file_name which is the absolute path to the file loaded
getLoadedFileType
(self)Returns the file_type (e.g.
getMaxIntensity
(self)Returns the maximum intensity
getMaxMZ
(self)Returns the maximum m/z
getMaxRT
(self)Returns the maximum RT
getMetaValue
(self, in_0)Returns the value corresponding to a string, or
getMinIntensity
(self)Returns the minimum intensity
getMinMZ
(self)Returns the minimum m/z
getMinRT
(self)Returns the minimum RT
getPrimaryMSRunPath
(self, toFill)Returns the MS run path (stored in ColumnHeaders)
getUniqueId
(self)Returns the unique id
get_df
()Generates a pandas DataFrame with both consensus feature meta data and intensities from each sample.
Generates a pandas DataFrame with feature intensities from each sample in long format (over files).
Generates a pandas DataFrame with feature meta data (sequence, charge, mz, RT, quality).
hasInvalidUniqueId
(self)Returns whether the unique id is invalid.
hasValidUniqueId
(self)Returns whether the unique id is valid.
isMetaEmpty
(self)Returns if the MetaInfo is empty
isValid
(self, unique_id)Returns true if the unique_id is valid, false otherwise
metaRegistry
(self)Returns a reference to the MetaInfoRegistry
metaValueExists
(self, in_0)Returns whether an entry with the given name exists
push_back
(self, spec)removeMetaValue
(self, in_0)Removes the DataValue corresponding to name if it exists
reserve
(self, s)setDataProcessing
(self, in_0)Sets the description of the applied data processing
setExperimentType
(self, experiment_type)Mutable access to the experiment type
setIdentifier
(self, id)Sets document identifier (e.g.
setLoadedFilePath
(self, file_name)Sets the file_name according to absolute path of the file loaded, preferably done whilst loading
setLoadedFileType
(self, file_name)Sets the file_type according to the type of the file loaded from, preferably done whilst loading
setMetaValue
(self, in_0, in_1)Sets the DataValue corresponding to a name
Overload:
setProteinIdentifications
(self, in_0)Sets the protein identifications
setUnassignedPeptideIdentifications
(self, in_0)Sets the unassigned peptide identifications
setUniqueId
(self, rhs)Assigns a new, valid unique id.
size
(self)Overload:
sortByMZ
(self)Sorts the peaks according to m/z position
sortByMaps
(self)Sorts with respect to the sets of maps covered by the consensus features (lexicographically)
sortByPosition
(self)Lexicographically sorts the peaks by their position (First RT then m/z)
Overload:
sortByRT
(self)Sorts the peaks according to RT position
sortBySize
(self)Sorts with respect to the size (number of elements)
Sorts PeptideIdentifications of consensus features with respect to their map index.
updateRanges
(self)- appendColumns(self, in_0: ConsensusMap) ConsensusMap #
Add consensus map entries as new columns
- appendRows(self, in_0: ConsensusMap) ConsensusMap #
Add consensus map entries as new rows
- clear()#
Overload:
- clear(self, clear_meta_data: bool) None
Clears all data and meta data
Overload:
- clear(self) None
- clearMetaInfo(self) None #
Removes all meta values
- clearRanges(self) None #
Resets all range dimensions as empty
- clearUniqueId(self) int #
Clear the unique id. The new unique id will be invalid. Returns 1 if the unique id was changed, 0 otherwise
- empty(self) bool #
- ensureUniqueId(self) int #
Assigns a valid unique id, but only if the present one is invalid. Returns 1 if the unique id was changed, 0 otherwise
- getColumnHeaders()#
- getDataProcessing(self) List[DataProcessing] #
Returns a const reference to the description of the applied data processing
- getKeys(self, keys: List[bytes]) None #
Fills the given vector with a list of all keys for which a value is set
- getLoadedFilePath(self) bytes | str | String #
Returns the file_name which is the absolute path to the file loaded
- getLoadedFileType(self) int #
Returns the file_type (e.g. featureXML, consensusXML, mzData, mzXML, mzML, …) of the file loaded
- getMaxIntensity(self) float #
Returns the maximum intensity
- getMaxMZ(self) float #
Returns the maximum m/z
- getMaxRT(self) float #
Returns the maximum RT
- getMetaValue(self, in_0: bytes | str | String) int | float | bytes | str | List[int] | List[float] | List[bytes] #
Returns the value corresponding to a string, or
- getMinIntensity(self) float #
Returns the minimum intensity
- getMinMZ(self) float #
Returns the minimum m/z
- getMinRT(self) float #
Returns the minimum RT
- getPrimaryMSRunPath(self, toFill: List[bytes]) None #
Returns the MS run path (stored in ColumnHeaders)
- getProteinIdentifications(self) List[ProteinIdentification] #
- getUnassignedPeptideIdentifications(self) List[PeptideIdentification] #
- getUniqueId(self) int #
Returns the unique id
- get_df()#
Generates a pandas DataFrame with both consensus feature meta data and intensities from each sample.
Returns: pandas.DataFrame: meta data and intensity DataFrame
- get_intensity_df()#
Generates a pandas DataFrame with feature intensities from each sample in long format (over files).
For labelled analyses channel intensities will be in one row, therefore resulting in a semi-long/block format. Resulting DataFrame can be joined with result from get_metadata_df by their index ‘id’.
Returns: pandas.DataFrame: intensity DataFrame
- get_metadata_df()#
Generates a pandas DataFrame with feature meta data (sequence, charge, mz, RT, quality).
Resulting DataFrame can be joined with result from get_intensity_df by their index ‘id’.
Returns: pandas.DataFrame: DataFrame with metadata for each feature (such as: best identified sequence, charge, centroid RT/mz, fitting quality)
- hasInvalidUniqueId(self) int #
Returns whether the unique id is invalid. Returns 1 if the unique id is invalid, 0 otherwise
- hasValidUniqueId(self) int #
Returns whether the unique id is valid. Returns 1 if the unique id is valid, 0 otherwise
- isMetaEmpty(self) bool #
Returns if the MetaInfo is empty
- isValid(self, unique_id: int) bool #
Returns true if the unique_id is valid, false otherwise
- metaRegistry(self) MetaInfoRegistry #
Returns a reference to the MetaInfoRegistry
- metaValueExists(self, in_0: bytes | str | String) bool #
Returns whether an entry with the given name exists
- push_back(self, spec: ConsensusFeature) None #
- removeMetaValue(self, in_0: bytes | str | String) None #
Removes the DataValue corresponding to name if it exists
- reserve(self, s: int) None #
- setColumnHeaders()#
- setDataProcessing(self, in_0: List[DataProcessing]) None #
Sets the description of the applied data processing
- setExperimentType(self, experiment_type: bytes | str | String) None #
Mutable access to the experiment type
- setLoadedFilePath(self, file_name: bytes | str | String) None #
Sets the file_name according to absolute path of the file loaded, preferably done whilst loading
- setLoadedFileType(self, file_name: bytes | str | String) None #
Sets the file_type according to the type of the file loaded from, preferably done whilst loading
- setMetaValue(self, in_0: bytes | str | String, in_1: int | float | bytes | str | List[int] | List[float] | List[bytes]) None #
Sets the DataValue corresponding to a name
- setPrimaryMSRunPath()#
Overload:
- setPrimaryMSRunPath(self, s: List[bytes]) None
Sets the file paths to the primary MS run (stored in ColumnHeaders)
Overload:
- setPrimaryMSRunPath(self, s: List[bytes], e: MSExperiment) None
- setProteinIdentifications(self, in_0: List[ProteinIdentification]) None #
Sets the protein identifications
- setUnassignedPeptideIdentifications(self, in_0: List[PeptideIdentification]) None #
Sets the unassigned peptide identifications
- setUniqueId(self, rhs: int) None #
Assigns a new, valid unique id. Always returns 1
- setUniqueIds()#
- size(self) int #
- sortByIntensity()#
Overload:
- sortByIntensity(self, reverse: bool) None
Sorts the peaks according to ascending intensity.
Overload:
- sortByIntensity(self) None
- sortByMZ(self) None #
Sorts the peaks according to m/z position
- sortByMaps(self) None #
Sorts with respect to the sets of maps covered by the consensus features (lexicographically)
- sortByPosition(self) None #
Lexicographically sorts the peaks by their position (First RT then m/z)
- sortByQuality()#
Overload:
- sortByQuality(self, reverse: bool) None
Sorts the peaks according to ascending quality.
Overload:
- sortByQuality(self) None
- sortByRT(self) None #
Sorts the peaks according to RT position
- sortBySize(self) None #
Sorts with respect to the size (number of elements)
- sortPeptideIdentificationsByMapIndex(self) None #
Sorts PeptideIdentifications of consensus features with respect to their map index.
- updateRanges(self) None #