FIAMSDataProcessor#
- class pyopenms.FIAMSDataProcessor#
Bases:
object
Cython implementation of _FIAMSDataProcessor
- Original C++ documentation is available here
– Inherits from [‘DefaultParamHandler’]
ADD PYTHON DOCUMENTATION HERE
- __init__()#
Overload:
- __init__(self) None
Data processing for FIA-MS data
Overload:
- __init__(self, in_0: FIAMSDataProcessor) None
Methods
Overload:
convertToFeatureMap
(self, input_)Convert a spectrum to a feature map with the corresponding polarity
extractPeaks
(self, input_)Pick peaks from the summed spectrum
getDefaults
(self)Returns the default parameters
getName
(self)Returns the name
getParameters
(self)Returns the parameters
getSubsections
(self)run
(self, experiment, n_seconds, output, ...)Run the full analysis for the experiment for the given time interval
setName
(self, in_0)Sets the name
setParameters
(self, param)Sets the parameters
trackNoise
(self, input_)Estimate noise for each peak
- convertToFeatureMap(self, input_: MSSpectrum) FeatureMap #
Convert a spectrum to a feature map with the corresponding polarity
Applies SavitzkyGolayFilter and PeakPickerHiRes
- Parameters:
input – Input a picked spectrum
- Returns:
A feature map with the peaks converted to features and polarity from the parameters
- extractPeaks(self, input_: MSSpectrum) MSSpectrum #
Pick peaks from the summed spectrum
- Parameters:
input – Input vector of spectra
- Returns:
A spectrum with picked peaks
- getSubsections(self) List[bytes] #
- run(self, experiment: MSExperiment, n_seconds: float, output: MzTab, load_cached_spectrum: bool) bool #
Run the full analysis for the experiment for the given time interval
The workflow steps are: - the time axis of the experiment is cut to the interval from 0 to n_seconds - the spectra are summed into one along the time axis with the bin size determined by mz and instrument resolution - data is smoothed by applying the Savitzky-Golay filter - peaks are picked - the accurate mass search for all the picked peaks is performed
The intermediate summed spectra and picked peaks can be saved to the filesystem. Also, the results of the accurate mass search and the signal-to-noise information of the resulting spectrum is saved.
- Parameters:
experiment – Input MSExperiment
n_seconds – Input number of seconds
load_cached_spectrum – Load the cached picked spectrum if exists
output – Output of the accurate mass search results
- Returns:
A boolean indicating if the picked spectrum was loaded from the cached file
- trackNoise(self, input_: MSSpectrum) MSSpectrum #
Estimate noise for each peak
Uses SignalToNoiseEstimatorMedianRapid
- Parameters:
input – Input a picked spectrum
- Returns:
A spectrum object storing logSN information